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Abstract—The efficiency and quality of a feature descriptor are critical to the user
experience of many computer vision applications. However, the existing
descriptors are either too computationally expensive to achieve real-time
performance, or not sufficiently distinctive to identify correct matches from a large
database with various transformations. In this paper, we propose a highly efficient
and distinctive binary descriptor, called local difference binary (LDB). LDB directly
computes a binary string for an image patch using simple intensity and gradient
difference tests on pairwise grid cells within the patch. A multiple-gridding strategy
and a salient bit-selection method are applied to capture the distinct patterns of the
patch at different spatial granularities. Experimental results demonstrate that
compared to the existing state-of-the-art binary descriptors, primarily designed for
speed, LDB has similar construction efficiency, while achieving a greater accuracy
and faster speed for mobile object recognition and tracking tasks.

Index Terms—Binary feature descriptor, mobile devices, object recognition,
tracking, augmented reality
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1 INTRODUCTION

FEATURE point descriptors are widely used in many computer
vision tasks such as marker-less augmented reality (AR) [10], [11],
simultaneous localization and mapping (SLAM) [16], and image
retrieval [19], [21]. Their broad applications have driven the
development of a plethora of descriptors [1], [2], [3], [4], [5], [6], [7],
[8]. However, as the application requirements are increasingly
demanding, for example, handling larger databases and/or
running real time on handheld devices, the demand for more
advanced descriptors is stronger than ever.

An ideal descriptor should achieve two competing goals: high-
quality description and low computational complexity. High-
quality descriptors capture the most representative information in
an image, such that different image content can be distinguished
(i.e., high distinctiveness) and the same content subject to various
image distortions can be recognized (i.e., high robustness). High-
speed descriptors enable the entire application task to run in real
time at a sufficiently high frame rate.

Many research efforts have been made to achieve either strict
quality requirements or low computational speed. The SIFT
descriptor [2], proposed over a decade ago, has been widely
adopted as one of the highest quality options. However, it imposes
a heavy computation burden. This drawback has drawn extensive
efforts [1], [3] for optimizing its speed without compromising its
quality too much. Among the enhancements, SURF [1] is arguably
the most noticeable. But recent experiments [22] have shown that
the SURF descriptor is still too computationally heavy; thus only a
limited number of points can be handled for real-time applications
such as AR, especially for handheld devices such as smartphones
and tablets. On the other end of the spectrum aiming primarily at
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fast runtime, lightweight binary descriptors such as BRISK [6],
FREAK [7], BRIEF [4], and its variant rBRIEF (or ORB descriptor)
[5] have become increasingly popular as they are very efficient to
store and to match (simply computing the Hamming distance
between descriptors via XOR and bit-count operations). These
runtime advantages make them more suitable for real-time
applications and handheld devices. However, these binary
descriptors utilize overly simplified information, i.e., raw inten-
sities of a subset of pixels within an image patch for binary tests,
and thus have low discriminative ability. Lack of distinctiveness
incurs an enormous number of false matches when matching
against a large database. Expensive postverification methods (e.g.,
RANSAC [23] or PROSAC [13]) are usually required to discover
and validate matching consensus, increasing the runtime of the
entire process.

In this paper, we introduce a new binary descriptor, named
local difference binary (LDB), which achieves similar computa-
tional speed and robustness as the state-of-the-art binary descrip-
tors [4], [5], [6], [7], yet offering much higher distinctiveness
compared to them. The high quality of LDB is achieved through
three schemes. First, LDB utilizes both average intensity I,,, and
first-order gradients, d, and d,, of grid cells within an image patch.
Specifically, the internal patterns of the image patch are captured
through a set of binary tests, each of which compares the I, d,
and d, of a pair of grid cells (see Figs. la and 1b). The average
intensity and gradients provide a more complete description than
other binary descriptors. Second, LDB employs a multiple-
gridding strategy to encode the structure at different spatial
granularities (see Fig. 1c). Coarse-level grids can cancel out high-
frequency noise, while fine-level grids can capture detailed local
patterns, thus enhancing distinctiveness. Third, LDB leverages a
modified AdaBoost method to select a set of salient bits. The
modified AdaBoost targets the fundamental goal of ideal binary
descriptors: minimizing distances between matches while max-
imizing them between mismatches, optimizing the performance of
LDB for a given descriptor length. Computing LDB is extremely
fast. Relying on integral images, the average intensity and first-
order gradients of each grid cell can be obtained by only 4-8 add/
subtract operations.

Our experimental results demonstrate that the construction
speed of LDB is much faster than that of SURF and is comparable
to those of the state-of-the-art binary descriptors, including ORB,
BRISK, and FREAK, while the robustness and distinctiveness of
LDB is higher than these descriptors.

The remainder of this paper is organized as follows: Section 2
reviews the related work. Section 3 presents details of the
proposed descriptor. In Sections 4 and 5 we compare performance
of LDB with the state-of-the-art descriptors on public benchmarks
and evaluate its speed, robustness, and discriminative power for
mobile applications. Section 6 concludes the paper.

2 RELATED WORK

SIFT is currently among the best quality descriptors in the
literature. It relies on local gradient histograms and represents an
image patch using a 128D real-value vector. Despite its high
descriptive power and robustness to a variety of image transfor-
mations, the intensive computations for obtaining gradients and
the high dimensionality of SIFT make it prohibitively slow to
compute and match, especially on low-power devices. PCA-SIFT
[3] reduced the descriptor from 128D to 36D to reduce the
matching cost, whereas the increased time for descriptor formation
almost annihilates the increased speed of matching. To date, SURF
descriptor is considered as the most popular replacement for SIFT.
It greatly accelerates the gradient computations using integral
images as [14], while almost preserving the quality of SIFT.
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Fig. 1. lllustration of LDB extraction. (a) An image patch is divided into 3 x 3 equal-
sized grids. (b) Compute the intensity summation (I), gradient in 2 and y directions
(d. and d,) of each patch, and compare I, d,, and d, between every unique pair of
grids. (c) Three-level gridding (with 2 x 2, 3 x 3, and 4 x 4 grids) is applied to
capture information at different granularities.

However, recent results [22] reveal that SUREF is still too costly to
construct and to match, thus it remains unsuitable for real-time
mobile applications.

The increasing demand of handling a larger database or
running on mobile devices stimulates the development of light-
weight binary descriptors that are efficient to construct, to match,
and to store. Notably, the BRIEF descriptor [4] directly generates
bit strings by simple binary tests comparing pixel intensities in a
smoothed image patch. But BRIEF is very sensitive to image scale
and rotation changes, restricting its application to general tasks. To
address these limitations, Rublee et al. [5] proposed ORB which
incorporates image pyramids and an orientation operator into
BRIEF to achieve scale and rotation invariance. In addition, rather
than randomly selecting pixel pairs as in BRIEF, ORB selects
highly-variant and uncorrelated pixel pairs based on an ad-hoc
scheme. BRISK [6] is another binary descriptor which also targets
achieving better quality than BRIEF. BRISK leverages similar
approaches as ORB to cope with scale and rotation invariance.
Unlike ORB, BRISK leverages a circular sampling pattern based on
which it computes intensity comparisons between short-distant
point pairs to form a binary descriptor string. Alahi et al. [7]
further enhanced BRISK by leveraging a sampling strategy which
resembles the retinal ganglion cells distribution. However, all the
existing binary descriptors utilize only raw intensities of a subset
of pixels within an image patch and ad-hoc schemes for bit
selection, thus are not distinctive enough to effectively localize
matched patches in large databases. Postprocessing for removing
false matches is usually required to ensure sufficient matching
accuracy, increasing the total time cost for the entire process.

3 LDB: LocAL DIFFERENCE BINARY

Our feature design was inspired by Schechtman and Irani’s self-
similarity descriptor [8], in which an image patch was divided into
grids and cross correlations between the center grid and the others
are computed. Since most of the photometric changes (e.g.,
lighting/contrast changes, blurring, image noises, etc.) can be
removed by computing the difference between two subregions, the
self-similarity descriptor is resilient to photometric changes, yet
captures intrinsic structures within the image.

However, computing cross correlations between grids demands
sum-of-square-differences operations for each pixel, which is
computationally expensive and cannot be sped up by integral
images. Moreover, the self-similarity descriptor is a real-value feature
vector and thus is not efficient to match and store. Here, we create
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Fig. 2. lllustration of binary tests on the pair of diagonal grids for three image
patches. (a) Three image patches with different pixel intensity values and
distributions. (b) The average intensity value I and gradients in the z and y
directions, d, and d,, for each pair of diagonal grids. For each of these three
cases, red and green grids have the same I, while having different d, and d,,.
Thus, individual grids can still be distinguished from each other. (c) Three-bit
binary test results for the three patches.

a bit vector based on binary tests between every pair of grid cells
and avoid cross-correlation operations.

More specifically, we divide each image patch P into n x n
equal-sized grids, extract representative information from each
grid cell, and perform a binary test 7 on each pair of grid cells (i and
J) as

. . 1, if (Func(i) — Func(j)) > 0 and i # j,
T(Func(i), Func(j)) := {07 Otl(lerwis((a,) (1)) #J

(1)

where Func is the function for extracting information from a
grid cell.

The information used for the binary tests determines the quality
as well as the efficiency of a descriptor. The most basic yet fast-to-
compute information is the average intensity, which represents the
direct component of a grid cell and can be computed extremely fast
via the integral image technique. However, the average intensity is
too coarse to describe the intensity changes inside a grid cell. For
example, Fig. 2a shows three patches, each with 2 x 2 grid cells.
Consider the up-left grid cell in each of the three patches (denoted
by red rectangles). Although the pixel intensity values and
distributions in these three grid cells are very different, their
means of intensities are exactly the same (see Fig. 2b). A binary test
7 between diagonal grid cells yields identical results for these three
distinct patches.

To improve its quality, we incorporate the first-order gradients,
in addition to using the average intensity. It is known that
gradients are more resilient to photometric changes than average
intensities and can also capture intensity changes inside a grid
such as the magnitude and direction of an edge. Considering the
patches in Fig. 2, the first-order gradients in the = and y directions
are able to distinguish them (see Fig. 2b). In addition, gradients can
be computed using box filters [14] which can be easily sped up by
integral images. We define Func(i) for our LDB as a tuple
FUTLC(l) € {Iintensity(i)7 dz (Z)y du(l)}/ where

1
Iintensity(i) ::E Z Intensity(k),

k=1~m
d, (i) == Gradient,(i),
d, (i) := Gradient,(i),

(2)

and m is the total number of pixels in grid cell i. Since we use
equal-sized grids, m is the same in all cases and can be omitted in
the computation. Gradient,(i) and Gradient,(i) are the regional
gradients of grid cell ¢ in the z and y directions, respectively.
Based on (2), the average intensity and the z and y gradients are
computed for each grid cell; thus comparing the respective values



190

Bikes - Image Blur
100 50

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 1,

Trees - Image Blur

JANUARY 2014

Leuven - Lighting Changes

80 40

60 30

40 20

20 10

0 0
1/2 1/3 1/4 1/5 1/6

UBC - Compression Artifacts

Recognition Rate(%)

60
40
IAE
i
1/2 1/3 1/4 1/5 1/6

Wall - Viewpoint Changes

80

1/2 1/3 1/4 1/5 1/6

Boat - Scale and Rotation Changes

100 80

80

60

40

20

o
1/2 1/3 1/4 1/5 1/6

M oRrB-32

60

Recognition Rate(%)

Il LDB-32 I BRISK-64

40 40

) - ;

. mm ____ |
1/2 1/3 1/4 1/5 1/6

PR ==

1/6

” - il
1/2 1/3 1/4 1/5

M FREAK-64 M suRF-64 M LDB-64

Fig. 3. Recognition rate obtained by LDB, ORB, BRISK, FREAK, and SURF for the six image sequences of VggAffine data set.

for each pair of grid cells results in 3 bits using test 7 defined in (1)
(see Fig. 3c).

Performing binary tests on pairwise grid cells out of n x n grids
results in a bit string of 3n?(n’?—1)/2. As n increases, the
distinctiveness of a descriptor increases, while the complexity for
matching and storage increases as well. To form a compact LDB
descriptor, we choose a subset of n, bits out of 3n?(n? — 1)/2 bits to
form a unique LDB descriptor.

In Sections 3.1 and 3.2, we discuss the gridding and bit-selection
strategy, respectively. In Section 3.3, we introduce steered LDB to
cope with rotation and show how to compute it efficiently.

3.1 Gridding Choices

The choice of the grid size influences both robustness and
distinctiveness of the LDB descriptor. If the gridding is fine, i.e.,
having a large number of small grids per patch, corresponding
grids of two similar patches could be misaligned even for a small
amount of patch shifting. Hence, the descriptor’s stability would
be lower. Whereas, the descriptor extracted from smaller grids
captures more detailed local patterns of a patch and thus is more
distinctive than that extracted from larger grids. Dividing a patch
into a small number of large grids, on the other hand, results in a
more stable but less distinctive descriptor.

With this observation, we employ a strategy incorporating
multiple-gridding choices to achieve both high robustness and
high distinctiveness. Each image patch is partitioned in multiple
ways, for example, 2 x 2, 3 x 3, 4 x4, and 5 x 5 from each of
which a LDB binary string is derived. We then concatenate the
strings resulting from all the partitions to form an initial LDB
descriptor.

3.2 AdaBoost-Based Bit Selection

The above mentioned gridding strategy may produce a long bit
string. For example, concatenating binary strings resulting from
2x2,3x%x3,4x4,and 5 x 5 partitions to a patch leads to a binary
string of 1,386 bits. Further increasing the number of ways for
partitioning would result in even more bits. Despite being
distinctive, long bit strings reduce the efficiency for matching
and storage. Moreover, bits in a long string may have strong
correlation, yielding redundancy. To address this, we employ a bit-
selection strategy which aims at achieving two fundamental goals
of an ideal binary description: 1) maximizing the distance between
mismatches, while minimizing it between matches, and 2) having
low correlations between dimensions.

The Adaboost learning, which is used in Viola and Jones's face
detection system [17], has demonstrated high effectiveness for
selecting a small set of face features which can best separate face
and nonface images. With a similar objective for the face features
and binary bits, differentiating faces from nonfaces versus

differentiating matches from mismatches, it should be intuitive
that AdaBoost would be effective for achieving the first goal. In
each round of face-feature selection, AdaBoost reweights the
training examples to increase the emphasis on those incorrectly
classified by the previous weak classifiers. This scheme implicitly
reduces correlations among selected features as the feature
selected in each round tends to classify the data in a different
way from the ones selected in previous rounds.

However, the AdaBoost procedure in [17] is not directly
applicable to our bit selection due to two reasons:

1. It assigns a weight to each selected feature which reflects
its impact on the final performance. However, including
the weights would result in floating-point descriptors,
instead of binary descriptors, which would drastically
increase the complexity for matching. To produce binary
descriptors, we force all weights to be identical for all
selected features.

2. It aims at a cascaded rejection-based pipeline: The face
features in the latter pipeline stages are selected with the
objective of rejecting the remaining negative examples that
have not been removed in the previous stages. To support
this goal, their learning algorithm was designed to select a
single feature in each round which best separates the
remaining negative examples from the positive ones.
However, our objective is to select a set of bits to form an
optimal binary descriptor. Thus in each round, the selected
bit combined with the previously selected ones should
jointly produce small distances between matches and large
distances between mismatches. Therefore, we modify
AdaBoost’s feature selection criterion: Instead of selecting
a bit which gives a minimum single-round classification
error, we choose the one which gives a minimum
accumulated error, as the accumulated error reflects the
total distance based on the entire set of selected bits.

Pseudocode 1 details the procedure of our salient bit selection.

It is worth noting that as the number of selected bits increases, the
tasks for AdaBoost becomes more difficult and may produce a
classification error rate greater than 0.5. In these cases, the
following selected bits are not better than random selection. To
handle this problem, we prepare several training sets and switch to
a new training set and reset the weights for all training data once
the error rate is greater than 0.5. We also tried three other
unsupervised methods for salient bit selection: random selection,
entropy-based selection [20], and variance-correlation-based selec-
tion [5]. Experimental results show that the modified AdaBoost
method produces a more robust and distinctive description than
those three methods.
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Pseudo Code 1: AdaBoost-based Bit Selection.
Input: training data T = {(X;,Y;) | X; = (pa,p») is a pair
of patches, ¥; = 1 if X, is a match; otherwise is
Yi=-1,1<i<|T|}
Output: K salient bits
Stepl. Compute N-bit strings for all patches in 7'
Step2. Assign equal weight D; = 1/|T to all training data 7;.
Step3. For t =1 to K
o For each bit, classify all patch pairs X; according to the
following: X; who has identical bit values for its two
patches is classified as 1; else is labeled as —1.
e Find a bit b; which gives minimum accumulated
classification errors eqc.(t).
by = argmineqe.(t),
where €qcc(t) = €ace(t — 1) + €5, €qcc(—1) =0,
& = X0 DALY # hy( X))
oIf £; < 0.5, update weights of training data; otherwise,
switch to a new training set and reset weights to 1/|T|
for all training data.

We use three publicly available data sets (Liberty, Yosemite,
and Notre Dame [18]) as a source of training data for the AdaBoost
learning. Each data set contains over 400 K patches, sampled
densely from multiple images of 3D scenes. The data sets also
include ground truth data indicating the match and mismatch
information. The major transformations in these data sets include
scaling, illumination changes, and viewpoint changes. These
transformations commonly exist in real-world scenarios; thus
training descriptors using the data sets can help optimize the
performance for practical applications. In the training phase, we
prepared three training sets and for each training set we randomly
chose 5 K pairs of matching patches as positive data and 20 K pairs
of nonmatching patches as negative data. More negatives are
selected since in practice there are significantly more mismatches
than matches for most matching tasks.

3.3 Steered LDB

We aim at mobile real-time applications, such as mobile object
tracking and augmented reality, in which rotation changes are
quite common. Thus a description that is invariant to rotation
changes is very important for a good user experience. To make
LDB invariant to in-plane rotation, we estimate a dominant
orientation for a patch and align the patch to this orientation
before computing its descriptor. Several orientation estimation
approaches have been proposed in the past. Among them, we
follow the intensity moments-based method [5] for its good
performance and efficiency.

One problem of computing LDB descriptors for rotated patches
is that the integral image of an entire image cannot be directly used
for speeding up the computations because the patch axis is not
parallel to the integral image axis. To address this problem, we
compute a rotated integral image for each rotated patch. The
rotated integral image of a patch is calculated by summing up
pixels along the dominant orientation, instead of horizontal axis.
Based on the rotated integral image of the patch, we can efficiently
compute the intensity summation and gradients of any grid cell
within the patch.

4 COMPARISON WITH STATE-OF-THE-ART

In this section, we compare the robustness, distinctiveness, and
construction efficiency of LDB with ORB, BRISK, FREAK, and
SURF on public benchmarks.

JANUARY 2014 191

4.1 Invariance to Transformations

We first test the robustness of LDB with respect to common image
transformations, including image blur, illumination changes,
compression artifacts, and viewpoint, scale-and-rotation changes.

We performed the evaluation using six image sequences (i.e.,
Bikes, Trees, Leuven, UBC, Wall, and Boat) from the widely used
data set introduced by Mikolajczyk and Schmid [12]. Each image
sequence contains six images, sorted in order of an increasing
degree of distortions with respect to the first image. In particular,
the Bikes and Trees sequences are sorted in increasing image blur,
the Leuven and UBC sequences are in order of increasing
illumination changes and compression artifacts, respectively, and
the Wall and Boat sequences are in order of view point and scale-
and-rotation changes respectively. For each sequence, the task is to
match the first image to the remaining five, yielding five image
pairs per sequence which are denoted as pair 1/2 to pair 1/6.

For each test image, we compute 1,000 keypoints using an
oFAST [5] detector (scales = 3 and scale factor = 1.2) and binary
descriptors. Then for each keypoint in the first image, we find its
nearest neighbor (NN) in the second one via brute-force matching.
To obtain the ground truth of correct matches, for each keypoint in
the first image, we infer its corresponding point in the second
image using the known homography between them. We use the
same evaluation metric as used in BRIEF [4], the Recognition Rate
(i.e., the number of correct matches divided by the total number of
matches), to measure the robustness of a descriptor. We use the
OpenCV2.4.4 implementation for the oFAST detector, and
the ORB, BRISK, FREAK, and SURF descriptors. The LDB
descriptor is constructed by partitioning each patch in five ways,
ie,2x2,3x3,4x4, and 5 x 5, and then utilizing the n, bits
selected based on the modified AdaBoost algorithm to form a final
description. Two versions of LDB descriptors are generated
and tested in this work, i.e., LDB-32 and LDB-64 which stand for
32-byte and 64-byte LDB descriptions, respectively.

Fig. 3 illustrates the recognition rate achieved by LDB-32/-64,
ORB-32, BRISK-64, FREAK-64, and SURF-64. In general, LDB-64
exhibits higher robustness than other descriptors for all image
sequences except for the Wall and Boat sequences in which it
achieves similar results as BRISK. In principle, BRISK is inherently
more robust to viewpoint, scaling and rotation changes than LDB,
since BRISK selects short-distant pixel pairs and uses a circular
sampling strategy with greater emphasis on pixels closer to the
patch center. In comparison, LDB utilizes grid partitioning.
However, as our training set includes samples with viewpoint
and scaling changes, the learning process is able to select bits
which are robust with respect to such geometric deformations for
the LDB descriptors, yielding a comparable performance to BRISK.

Surprisingly, SURF is not better than (or even much worse than)
LDB and other binary descriptors in several cases. Similar
observations were already made and reported in BRISK [6] and
FREAK [7]. One potential reason is that the performance of a
descriptor is highly related to the detector, i.e., some descriptors
are more stable and descriptive for blobs than corners. As a result,
the SURF descriptor which is originally designed for use with a
blob detector (i.e., approximate Hessian detector) exhibits poor
performance when combined with oFAST, which is a corner
detector. It is worth noting that for the Leuven sequence which has
increasing lighting changes, both LDB-64 and SURF outperform
other binary descriptors for all image pairs. We believe that the
superior robustness of LDB-64 and SURF is due to the use of
gradient information, which is more robust with respect to
illumination changes than raw image intensities which are used
in other binary descriptors.

The desired binary description should also be highly dis-
tinctive so as to differentiate correct matches from false matches.
To examine the distinctiveness of binary descriptors we plot the
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Fig. 4. Recall versus 1-Precision curves obtained by LDB, ORB, BRISK, FREAK,
and SURF for image pairs 1/3 of VggAffine data set.

Recall versus 1-Precision curves based on a threshold-based
similarity matching as in [6] and [7]. Given a certain threshold,
the recall is defined as the number of correctly returned matches
divided by the total number of correct matches. The precision is
the number of correctly returned matches over the total number
of returned matches. A distinctive description should provide a
high precision at any given recall. Fig. 4 shows the Recall versus
1-Precision curves for image pairs 1/3 of all six image sequences.
Results show that LDB-64 outperforms other descriptors for all
sequences except for the Wall sequence in which it achieves
almost the same results as BRISK.

4.2 Construction Efficiency

Table 1 presents the results of average time cost for constructing a
single descriptor. The time cost was recorded on a Lenovo T420
laptop with an Intel core i5-2410M processor running at 2.3 GHz
and a Google Nexus 4 smartphone with a Qualcomm Snapdragon
54 Pro processor running at 1.5 GHz, respectively.

The results show that constructing an LDB-32 descriptor takes
0.048 ms on the laptop and 0.22 ms on the phone, which is faster
than ORB with the same descriptor length. Increasing the
descriptor length of LDB to 64 bytes (i.e., LDB-64) will slightly
increase the construction time, but it is still close to those for
constructing ORB and FREAK. All binary descriptors listed in
Table 1 have obvious advantages in construction efficiency
comparing to SURF. In particular, constructing an LDB-64
descriptor is ~13x faster than SURF on the laptop and ~8x faster
on the mobile platform.

5 APPLICATIONS ON MOBILE DEVICES

In this section, we evaluate the efficiency and effectiveness of LDB
for two mobile applications: mobile object recognition and real-
time mobile object tracking, which will be described below in
Sections 5.1 and 5.2, respectively.

5.1 Mobile Object Recognition

We implement a conventional object recognition pipeline on a
mobile handheld platform: We first detect oFAST keypoints and
construct descriptors for a captured image frame. Then we match
descriptors to our database and return K top-ranked (K = 10 in
our experiment) database images with most matching keypoints as
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TABLE 1
Time Cost for Constructing a Single Descriptor on a
Lenovo T420 Laptop and a Google Nexus 4 Smartphone

Descriptors Time on PC (ms) Time on Mobile (ms)
ORB-32 0.056 0.27
LDB-32 0.048 0.22
BRISK-64 0.026 0.05
FREAK-64 0.039 0.21
SURF-64 0.667 1.93
LDB-64 0.054 0.24

Time cost is the per-descriptor average time of computing 1,000 descriptors on
each image (size: 1,000 x 700 pixels) of the Bike sequence.

potential recognized images. Finally, we perform PROSAC for
each candidate image. The image with the most and a sufficient
number of matches after PROSAC validation is reported as the
final recognized image.

Our database contains 228 planar objects [19], including 109
document images and 119 natural images. For each database image,
we manually captured five pictures as the query images: One was
taken with minor geometric changes and the other four were taken
with up-scaling, down-scaling, rotation and shifting changes,
respectively. As a result, there are a total of 1,140 query images.

5.1.1 Experimental Setup

We extract 1,000 features on average from each query image and
database image, yielding 228 K descriptors in the database. Since it
is infeasible to perform nearest neighbors search via brute-forcing
matching for a large database, we leverage an indexing structure
for efficient approximate nearest neighbors (ANN) search.

With ORB, BRISK, FREAK, and LDB all being binary
descriptors, locality sensitive hashing (LSH) [15] is chosen for
ANN search in our experiment. The key of LSH is a hash function,
which maps similar descriptors into the same bucket of a hash
table and different descriptors into different buckets. To find the
NN of a query descriptor, we first retrieve its matching bucket, and
then check all the descriptors within the matched bucket using a
brute-force search. For binary features, the hash function can
simply be a subset of bits from the original bit string; descriptors
with a common sub-bit-string are cast to the same table bucket. The
size of the subset, i.e., the hash key size, determines the upper
bound of the Hamming distance among descriptors within the
same buckets. We use multitable and multiprobe LSH to improve
the detection rate of NN by looking at multiple hash tables and
neighboring buckets in which a query descriptor falls within each
table. In our experiment, we set the key size as 18, the number of
hash tables as 5, and the number of probes as 19. For SURF
descriptors, we use the kd-tree indexing structure for fast ANN
search. For the sake of a fair comparison between SURF and other
binary descriptors, we set the number of kd-trees as five, equal to
the number of hash tables.

We employ five metrics for performance evaluation:

1. Detection Rate: the number of correctly recognized objects
over the total number of objects;

2. Precision: the number of correctly recognized objects over
the total number of recognized objects;

3. Construction Time: the average time cost for constructing a
descriptor;

4. Matching Time: the average time cost for searching the
ANN of a query descriptor from the database; and

5. Memory Usage: the total amount of memory cost for
running a program.

All the time cost is recorded based on running the code on a

single core of Google Nexus 4, operating at 1.5 GHz, and using an
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TABLE 2
Comparing Performance of Descriptors for Recognizing 1,140 Manually Captured Images on a Google Nexus 4 Smartphone
Descriptor Detection Precision (%) Construction Matching Time Memory Usage (MB)
Rate (%) Time (ms) (ms) (recorded on PC)
ORB-32 93.3 98.6 0.146 7.26 118
LDB-32 96.3 99.0 0.139 2.55 118
BRISK-64 97.7 99.4 0.034 7.64 168
FREAK-64 98.3 99.5 0.108 24.65 168
SURF-64 83.8 92.9 1.488 - 466
LDB-64 98.6 99.5 0.143 476 168
LDB-64 achieves the highest detection rate and precision. Considering the total time cost including runtimes for both description and matching, LDB-64 is 1.6x faster

than BRISK and 5.1x faster than FREAK.

Android 4.2 Jelly Bean operating system. The memory cost is read
from the task manager of a PC.

5.1.2 Results

Table 2 summarizes the performance of the six descriptors. First,
we compare ORB-32 and LDB-32 which are descriptors of the same
length. Results show that LDB-32 achieves a greater detection rate
(96.3 percent) and a higher precision (99 percent) than ORB-32.
Regarding the runtime, the former is as fast as the latter to
construct and 2.8x faster to match than the latter. As both LDB-32
and ORB-32 utilize 32 bytes to represent a single descriptor, the
memory usages for these two descriptors are the same, which is
118 MB.

Second, we compare LDB-64 with BRISK-64, FREAK-64, and
SURF-64. Results show that the detection rate and the precision of
LDB-64 are greater than those of BRISK-64 and SURF-64 and
almost the same as those of FREAK-64. It is worth mentioning that
it is not completely fair to compare SURF-64 with other binary
descriptors as they employ different indexing structures, i.e., kd-
trees for SURF versus LSH for binary descriptors. Regarding the
runtime of descriptor construction, LDB-64 takes 0.143 ms for
deriving a descriptor, which is 10.4 x faster than SURF-64, 4 x
slower than BRISK (0.034 ms), and 1.3 x slower than FREAK
(0.108 ms). Although LDB-64 is slower than BRISK and FREAK for
descriptor construction, it is faster for ANN matching. Specifically,
LDB-64 achieves 1.6 x and 5.2 x speedups comparing to BRISK
and FREAK, respectively. Considering the total time cost including
runtimes for both description and matching, LDB-64 is 1.6 x faster
than BRISK and 5.1 x faster than FREAK.

The speedup in ANN matching is most likely due to the better
distinctiveness of LDB. Since nondistinctive descriptors may
cluster together in the feature space, resulting in a large number
of descriptors residing in some quantized subregions (i.e., buckets
of a hash table), and consequently yielding a large number of
checks during the matching process. On the contrary, distinctive
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Fig. 5. LSH bucket size distribution of the 228 image data set. LDB-32/-64 have
fewer large-sized buckets than FREAK, BRISK, and ORB and thus are faster in
ANN matching.

descriptors distribute more uniformly in the feature space, yielding
fewer and more relevant checks. To further validate this point, we
took a close look at the distribution of bucket sizes in the hash
tables, as shown in Fig. 5. We observe that the bucket size
distribution of LDB-64s hash tables is more even than those of
other binary descriptors.

In terms of the memory usage, even though SURF and binary
descriptors (LDB-64, BRISK-64, and FREAK-64) use equal amount
of bytes for representing a feature, it takes ~2x more memory
space (466 MB) than binary descriptors (168 MB). We believe this is
because kd-trees of SURF need to store a lot of intermediate tree
nodes in addition to the feature descriptors, resulting in a large
storage overhead. Due to the high memory cost of SUREF, it fails to
run successfully on a smartphone which has limited memory
resource allocated for user applications.

5.2 Real-Time Mobile Object Tracking

Tracking on mobile handheld devices involves matching the live
frames to descriptors of a target object. We compute 200
descriptors on each incoming frame and for each descriptor we
search its NN in the target object using brute-force matching. The
100 top-ranked matches (i.e., matches with the shortest distances)
are then validated by homography estimation based on PROSAC.

We evaluated the tracking performance of descriptors using the
“Phone” data set (http://www.samhare.net/research/keypoints)
which contains over 750 frames. We set the first frame as the target
object. Table 3 summarizes the tracking performance of six
descriptors. The results show that both LDB-32 and LDB-64
achieve a greater detection rate (i.e., the number of frames that
the target object has been successfully detected divided by the total
number of frames) than other descriptors. Regarding the runtime
of matching 200 descriptors, ORB-32 and LDB-32 take approximate
27 ms on Google Nexus 4, which is 2x faster than BRISK-64,
FREAK-64, and LDB-64. In comparison with binary descriptors,
matching SURF descriptors is much slower, which takes ~1.4 s on
the phone. In terms of the time cost for verification based on
PROSAC, LDB-64, and BRISK-64 takes the least amount of time

TABLE 3
Performance of Object Tracking on a Google Nexus 4 Smartphone

Desc. Detection Runtime (ms) Inlier
Rate (%) | Match | Verify | Total | Ratio(%)

ORB-32 95.2 27 20 119 50.0
LDB-32 98.9 27 11 112 55.1
BRISK-64 97.6 54 10 135 56.2
FREAK-64 95.2 54 43 152 39.4
SURF-64 98.4 1398 30 1761 43.0
LDB-64 100 54 10 142 56.9

LDB-32 gives the best result by achieving both a high detection rate and the
fastest tracking speed.
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(i.e., 10 ms). The faster speed for verification is due to the higher
inlier ratio (i.e., the number of matches consistent with the
estimated homography divided by the total number of matches).
As shown in the last column of Table 3, LDB-64 and BRISK-64
achieve a greater inlier ratio than other descriptors, yielding fewer
iterations for PROSAC to converge and a shorter runtime for the
verification process. Finally, we compare the total time cost for
tracking, including runtimes for feature extraction, matching and
verification. As shown in the fifth column of Table 3, LDB-32
achieves the fastest tracking speed.

6 CONCLUSION

In this paper, we introduce a new binary descriptor, named LDB,
which achieves greater robustness and discriminative ability than
the state-of-the-art binary descriptors, while maintaining high
runtime efficiency for descriptor construction. LDB employs a
scalable, multiple-gridding strategy and computes brightness and
gradient differences between pairwise grid cells to form a binary
descriptor string. A modified AdaBoost method is leveraged to
optimize its performance for a given descriptor length. Its superior
performance was demonstrated based on an extensive evaluation
using established benchmarks and a couple of mobile applications.
The unique characteristics of LDB make it particularly suitable for
computation-intensive tasks with hard real-time constraints run-
ning on a mobile platform with limited computing resources.
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